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Abstract
The ability to identify authors of computer programs

based on their coding style is a direct threat to the pri-
vacy and anonymity of programmers. Previous work has
examined attribution of authors from both source code
and compiled binaries, and found that while source code
can be attributed with very high accuracy, the attribu-
tion of executable binary appears to be much more dif-
ficult. Many potentially distinguishing features present
in source code, e.g. variable names, are removed in the
compilation process, and compiler optimization may al-
ter the structure of a program, further obscuring features
that are known to be useful in determining authorship.

We examine executable binary authorship attribution
from the standpoint of machine learning, using a novel
set of features that include ones obtained by decompiling
the executable binary to source code. We show that many
syntactical features present in source code do in fact sur-
vive compilation and can be recovered from decompiled
executable binary. This allows us to add a powerful set
of techniques from the domain of source code authorship
attribution to the existing ones used for binaries, result-
ing in significant improvements to accuracy and scalabil-
ity. We demonstrate this improvement on data from the
Google Code Jam, obtaining attribution accuracy of up to
92% with 100 candidate programmers. We also demon-
strate that our approach is robust to basic obfuscations,
a range of compiler optimization settings, and binaries
that have been stripped of their symbol tables. Finally,
for the first time we are aware of, we demonstrate that
authorship attribution can be performed on both obfus-
cated binaries, and real world code found “in the wild”
by performing attribution on single-author GitHub repos-
itories.

1 Introduction
If we encounter an executable binary sample in the wild,
what can we learn from it? In this work, we show that the
programmer’s stylistic fingerprint, or coding style, is pre-
served in the compilation process and can be extracted

from the executable binary. This means that it may be
possible to infer the programmer’s identity if we have
a set of known potential candidate programmers, along
with executable binary samples (or source code) known
to be authored by these candidates.

Besides its intrinsic interest, programmer de-
anonymization from executable binaries has implica-
tions for privacy and anonymity. Perhaps the creator
of a censorship circumvention tool distributes it anony-
mously, fearing repression. Our work shows that such a
programmer might be de-anonymized. Further, there are
applications for software forensics, for example to help
adjudicate cases of disputed authorship or copyright.

Rosenblum et al. studied this problem and presented
encouraging early results [40]. We build on their work
and make several advances to the state of the art, detailed
in Section 4. First, whereas Rosenblum et al. extract
structures such as control-flow graphs directly from the
executable binaries, our work is the first to show that au-
tomated decompilation of executable binaries gives addi-
tional categories of useful features. Specifically, we gen-
erate abstract syntax trees of decompiled source code.
Abstract syntax trees have been shown to greatly im-
prove author attribution of source code [18]. We find that
properties of these trees–including frequencies of differ-
ent types of nodes, edges, and average depth of different
types of nodes–also improve the accuracy of executable
binary attribution techniques.

Second, we demonstrate that using multiple tools for
disassembly and decompilation in parallel increases the
accuracy of de-anonymization, possibly because differ-
ent tools generate different representations of code that
capture different aspects of the programmer’s style. We
present a machine-learning framework based on infor-
mation gain for dimensionality reduction, followed by
random-forest classification, that allows us to effectively
use these disparate types of features in conjunction.

These innovations allow us to significantly improve
the scale and accuracy of programmer de-anonymization
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compared to Rosenblum et al.’s work. We performed
experiments with a controlled dataset collected from
Google Code Jam, allowing a direct comparison since
the same dataset was used in the previous work. The re-
sults of these experiments are discussed in detail in Sec-
tion 5. Specifically; for an equivalent accuracy we are
able to distinguish between thirty times as many candi-
date programmers (600 vs. 20) while utilizing a smaller
number of training samples per programmer. The accu-
racy of our method degrades gracefully as the number
of programmers increases, and we present experiments
with as many as 600 programmers.

Third, we find that traditional binary obfuscation, en-
abling compiler optimizations, or stripping debugging
symbols in executable binaries results in only a mod-
est decrease in classification accuracy. These results, de-
scribed in Section 6, are an important step toward estab-
lishing the practical significance of the method.

The fact that coding style survives compilation is un-
intuitive, and may leave the reader wanting a “sanity
check" or an explanation for why this is possible. In Sec-
tion 5.9, we present several experiments that help illumi-
nate this mystery. First, we show that decompiled source
code isn’t necessarily similar to the original source code
in terms of the features that we use; rather, the feature
vector obtained from disassembly and decompilation can
be used to predict, using machine learning, the features
in the original source code. Even if no individual feature
is well preserved, there is enough information in the vec-
tor as a whole to enable this prediction. On average, the
cosine similarity between the original feature vector and
the reconstructed vector is over 80%. Further, we inves-
tigate factors that are correlated with coding style being
well-preserved, and find that more skilled programmers
are more fingerprintable. This suggests that program-
mers gradually acquire their own unique style as they
gain experience.

All these experiments were carried out using the con-
trolled Google Code Jam dataset; the availability of this
dataset is a boon for research in this area since it allows
us to develop and benchmark our results under controlled
settings [10, 40]. Having done that, we present a case
study with a real-world dataset collected from GitHub in
Section 6.4. This data presents difficulties, particularly
noise in ground truth because of library and code reuse.
However, we show that we can handle a noisy dataset of
50 programmers found in the wild with 61% accuracy
and further extend our method to tackle open world sce-
narios.

We emphasize that research challenges remain before
programmer de-anonymization from executable binaries
is fully ready for practical use. Many programs are
authored by multiple programmers and may have gone
through encryption. We have not yet performed exper-

iments that model these scenarios. Also, while identi-
fying the authors of executable malware binaries is an
exciting potential application, attribution techniques will
need to deal with obfuscated malware. Nonetheless, we
believe that our results have significantly advanced the
state of the art, and present immediate concerns for pri-
vacy and anonymity.

2 Problem Statement
In this work, we consider an analyst interested in deter-
mining the author of an executable binary purely based
on its style. Moreover, we assume that the analyst only
has access to executable binary samples each assigned to
one of a set of candidate programmers.

Depending on the context, the analyst’s goal might be
defensive or offensive in nature. For example, the ana-
lyst might be trying to identify a misbehaving employee
that violates the non-compete clause in his company by
launching an application related to what he does at work.
Similarly, a malware analyst might be interested in find-
ing the author or authors of a malicious executable bi-
nary.

By contrast, the analyst might belong to a surveil-
lance agency in an oppressive regime who tries to un-
mask anonymous programmers. The regime might have
made it unlawful for its citizens to use certain types of
programs, such as censorship-circumvention tools, and
might want to punish the programmers of any such tools.
If executable binary stylometry is possible, it means that
compiling code is not a way of anonymization. Because
of its potential dual use, executable binary stylometry is
of interest to both security and privacy researchers.

In either (defensive or offensive) case, the analyst (or
adversary) will seek to obtain labeled executable binary
samples from each of these programmers who may have
potentially authored the anonymous executable binary.
The analyst proceeds by converting each labeled sample
into a numerical feature vector, and subsequently deriv-
ing a classifier from these vectors using machine learning
techniques. This classifier can then be used to attribute
the anonymous executable binary to the most likely pro-
grammer.

Since we assume that a set of candidate programmers
is known, we treat our main problem as a closed-world,
supervised machine learning task. It is a multi-class ma-
chine learning problem where the classifier calculates
the most likely author for the anonymous executable bi-
nary sample among multiple authors. We briefly present
initial experiments on an open-world scenario in Sec-
tion 6.5.

Additional Assumptions. For our experiments, we
assume that we know the compiler used for a given pro-
gram binary. Previous work has shown that with only 20
executable binary samples per compiler as training data,
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it is possible to use a linear Conditional Random Field
[27] to determine the compiler used with accuracy of
93% on average [42]. Other work has shown that by us-
ing pattern matching, library functions can be identified
with precision and recall between 0.98 and 1.00 based on
each of three criteria; compiler version, library version,
and linux distribution [24].

In addition to knowing the compiler, we assume we
know the optimization level used for compilation of the
binary. Past work has shown that toolchain provenance,
including compiler family, version, optimization, and
source language, can be identified with a linear Con-
ditional Random Field with accuracy of 99.9% for lan-
guage, compiler family, and optimization and 91.9% for
compiler version [41]. More recent work has looked at
a stratified approach which, although having lower accu-
racy, is designed to be used at the function level to enable
preprocessing for further tasks including authorship attri-
bution [38]. Due to the success of these techniques, we
make the assumption that these techniques will be used
to identify the toolchain provenance of the executable bi-
naries of interest and that our method will be trained us-
ing the same toolchain.

3 Related Work
Any domain of creative expression allows authors or cre-
ators to develop a unique style, and we might expect that
there are algorithmic techniques to identify authors based
on their style. This class of techniques is called stylom-
etry. Natural-language stylometry, in particular, is well
over a century old [31]. Other domains such as source
code and music also have stylistic features, especially
grammar. Therefore stylometry is applicable to these do-
mains as well, often using strikingly similar techniques
[11, 44].

Linguistic stylometry. The state of the art in linguis-
tic stylometry is dominated by machine-learning tech-
niques [e.g., 7, 8, 32]. Linguistic stylometry has been
applied successfully to security and privacy problems,
for example Narayanan et al. used stylometry to iden-
tify anonymous bloggers in large datasets, exposing pri-
vacy issues [32]. On the other hand, stylometry has also
been used for forensics in underground cyber forums.
In these forums the text consists of a mixture of lan-
guages and information about underground forum prod-
ucts, which makes it more challenging to identify per-
sonal writing style. Not only have the forum users been
de-anonymized but also their multiple identities across
and within forums have also been linked through stylo-
metric analysis [8].

Authors may deliberately try to obfuscate or
anonymize their writing style [7, 14, 30]. Brennan et al.
[14] show how stylometric authorship attribution can
be evaded with adversarial stylometry. They present

two ways for adversarial stylometry, namely obfuscating
writing style and imitating someone else’s writing style.
Afroz et al. [7] identify the stylistic changes in a piece
of writing that has been obfuscated while [30] present a
method to make writing style modification recommenda-
tions to anonymize an undisputed document.

Source code stylometry. Several authors have ap-
plied similar techniques to identify programmers based
on source code [e.g., 15, 18, 34]. It has applications in
software forensics and plagiarism detection.1

The features used for machine learning in these works
range from simple byte-level [22] and word-level n-
grams [16, 17] to more evolved structural features ob-
tained from abstract syntax trees [18, 34]. In particular,
Burrows et al. [17] present an approach based on n-grams
that reaches an accuracy of 76.8% in differentiating 10
different programmers.

Similarly, Kothari et al. [26] combine n-grams with
lexical markers such as the line length, to build program-
mer profiles that allow them to identify 12 authors with
an accuracy of 76%. Lange and Mancoridis [28] further
show that metrics based on layout and lexical features
along with a genetic algorithm allow an accuracy of 75%
to be obtained for 20 authors. Finally, Caliskan-Islam
et al. [18] incorporate abstract syntax tree based struc-
tural features to represent programmers’ coding style.
They reach 94% accuracy in identifying 1,600 program-
mers of the Google Code Jam (GCJ) data set.

Executable binary stylometry. In contrast, identi-
fying programmers from compiled code is considerably
more difficult and has received little attention to date.
Code compilation results in a loss of information and ob-
structs stylistic features. We are aware of only two prior
works: Rosenblum et al. [40] and Alrabaee et al. [10],
which we over perform in this work. Both [40] and [10]
perform their evaluation and experiments on controlled
corpora that are not noisy, such as the GCJ dataset and
student homework assignments.

Rosenblum et al. [40] present two main machine learn-
ing tasks based on programmer de-anonymization. One
is based on supervised classification to identify the au-
thors of compiled code. The second machine learning
approach they use is based on clustering to group to-
gether programs written by the same programmers. They
incorporate a distance based similarity metric to differ-
entiate between features related to programmer style to
increase the clustering accuracy.

Rosenblum et al. [40] use the Paradyn project’s Parse
API for parsing executable binaries to get the instruction
sequences and control flow graphs whereas we use four
different resources to parse executable binaries to gen-

1Note that popular plagiarism-detection tools such as Moss [9] are
not based on stylometry; rather they detect code that may have been
copied, possibly with modifications. This is an orthogonal problem.
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erate a richer representation. Their dataset consists of
GCJ and homework assignment submissions. A support
vector machine classifier [20] is trained on the numeric
representations of varying numbers of executable bina-
ries. GCJ programmers have eight to sixteen files and
students have four to 7 files. Students collaborated on the
homework assignments and the skeleton code was avail-
able.

Malware attribution. While the analysis of malware
is a well developed field, authorship attribution of mal-
ware has received much less attention. Stylometry may
have a role in this application, and this is a ripe area for
future work. The difficulty in obtaining ground truth
labels for samples has led much work in this area to
focus on clustering malware in some fashion, and the
wide range of obfuscation techniques in common use
have led many researchers to focus on dynamic analysis
rather than the static features we consider. The work of
Marquis-Boire et al. [29] examines several static features
intended to provide credible links between executable
malware binary produced by the same authors, however
many of these features are specific to malware, such as
command and control infrastructure and data exfiltration
methods, and the authors note that many must be ex-
tracted by hand. In dynamic analysis, the work of Pf-
effer et al. [35] examines information obtained via both
static and dynamic analysis of malware samples to or-
ganize code samples into lineages that indicate the or-
der in which samples are derived from each other. Bayer
et al. [12] convert detailed execution traces from dynamic
analysis into more general behavioral profiles, which are
then used to cluster malware into groups with related
functionality and activity. Supervised methods are used
by Rieck et al. [39] to match new instances of malware
with previously observed families, again on the basis of
dynamic analysis.

4 Approach
Our ultimate goal is to automatically recognize program-
mers of compiled code. We approach this problem using
supervised machine learning, that is, we generate a clas-
sifier from training data of sample executable binaries
with known authors. The advantage of such learning-
based methods over techniques based on manually spec-
ified rules is that the approach is easily retargetable to
any set of programmers for which sample executable bi-
naries exist. A drawback is that the method is inoperable
if samples are not available or too few in number. We
study the amount of sample data necessary for success-
ful classification in Section 5.

Data representation is critical to the success of ma-
chine learning. Accordingly, we design a feature set for
executable binary authorship attribution with the goal of
faithfully representing properties of executable binaries

relevant for programmer style. We obtain this feature set
by augmenting lower-level features extractable from dis-
assemblers with additional string and symbol informa-
tion, and, most importantly, incorporating higher-level
syntactical features obtained from decompilers.

In summary, this results in a method consisting of the
following four steps (see Figure 1).

• Disassembly. We begin by disassembling the pro-
gram to obtain features based on machine code in-
structions, referenced strings, symbol information,
and control flow graphs (Section 4.1).

• Decompilation. We proceed to translate the pro-
gram into C-like pseudo code via decompilation.
By subsequently passing the code to a fuzzy parser
for C, we thus obtain abstract syntax trees from
which syntactical features and n-grams can be ex-
tracted (Section 4.2).

• Dimensionality Reduction. With features from
disassemblers and decompilers at hand, we select
those among them that are particularly useful for
classification by employing a standard feature se-
lection technique based on information gain (Sec-
tion 4.3).

• Classification. Finally, a random-forest classifier is
trained on the corresponding feature vectors to yield
a program that can be used for automatic executable
binary authorship attribution (Section 4.4).

In the following, we describe these steps in greater de-
tail and provide background information on static code
analysis and machine learning where necessary.

4.1 Feature extraction via disassembly
As a first step, we disassemble the executable binary to
extract low-level features that have been shown to be
suitable for authorship attribution in previous work. In
particular, we follow the example set by Rosenblum et
al. and extract raw instruction traces from the executable
binary [40]. In addition to this, disassemblers commonly
make available symbol information as well as strings ref-
erenced in the code, both of which greatly simplify man-
ual reverse engineering. We augment the feature set ac-
cordingly. Finally, we can obtain control flow graphs of
functions from disassemblers, providing features based
on program basic blocks. The required information nec-
cessary to construct our feature set is obtained from the
following two disassemblers.

• The Netwide Disassembler. We begin by exploring
whether simple instruction decoding alone can al-
ready provide useful features for de-anonymization.
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test  edi, edi
mov   eax, 0x0
cmovs edi, eax
      ...

test  edi, edi
mov   eax, 0x0
cmovs edi, eax
      ...

1000 0101 1111 
1111 1011 1000
0000 0000 0000

...

test  edi, edi
mov   eax, 0x0
cmovs edi, eax
      ...

int f(int a) { 
  if (a < 0)
    a = 0;
  ... int a

stmt

if

func

param

...

Analysis of 
information 

grain

Random 
Forest 

Classifier

test  edi, edi
mov   eax, 0x0
cmovs edi, eax
      ...

test  edi, edi
mov   eax, 0x0
cmovs edi, eax
      ...

1000 0101 1111 
1111 1011 1000
0000 0000 0000

...

test  edi, edi
mov   eax, 0x0
cmovs edi, eax
      ...

int f(int a) { 
  if (a < 0)
    a = 0;
  ... int a

stmt

if

func

param

...

Disassembly Decompilation Fuzzing Parsing

Analysis of 
information 

grain

Dimensionality
reduction

Random 
Forest 

Classifier

Classification De-anonymized
programmer

Instruction 
features

Word 
features

Binary Code

AST & CFG 
features

Figure 1: Overview of our method. Instructions, symbols, and strings are extracted using disassemblers (1), syntactical and control-flow features
are obtained from decompilers (2). Dimensionality reduction is performed to obtain representative features (3). Finally, a random forest classifier
is trained to de-anonymize programmers (4).

To this end, we process each executable binary us-
ing the netwide disassembler (ndisasm) [43], a rudi-
mentary disassembler that is capable of decoding
instructions but is unaware of the executable’s file
format. Due to this limitation, it resorts to sim-
ply decoding the executable binary from start to
end, skipping bytes when invalid instructions are
encountered. A problem with this approach is that
no distinction is made between bytes that represent
data, and bytes that represent code. We explore this
simplistic approach nonetheless as these inaccura-
cies may not be relevant given the statistical nature
of machine learning.

• The Radare2 Disassembler. We proceed to apply
radare2 [33], a state-of-the-art open-source disas-
sembler based on the capstone disassembly frame-
work [37]. In contrast to the ndisasm, radare2 un-
derstands the executable binary format, allowing
it to process relocation and symbol information in
particular. This allows us to extract symbols from
the dynamic (.dynsym) as well as the static symbol
table (.symtab) where present, as well as any strings
referenced in the code. Our approach thus gains
knowledge over functions of dynamic libraries used
in the code. Finally, radare2 attemps to identify
functions in code and generates corresponding con-
trol flow graphs.

The information provided by the two disassemblers is
combined to obtain our disassembly feature set as fol-
lows: we tokenize the instruction traces of both disas-
semblers and extract token uni-grams, bi-grams, and tri-
grams within a single line of assembly, and 6-grams,
which span two consecutive lines of assembly. In addi-
tion, we extract single basic blocks of radare2’s control
flow graphs, as well as pairs of basic blocks connected
by control flow.

4.2 Feature extraction via decompilation
Decompilers are the second source of information that
we consider for feature extraction in this work. In con-
trast to disassemblers, decompilers do not only uncover
the program’s machine code instructions, but addition-
ally reconstruct higher level constructs in an attempt
to translate an executable binary into equivalent source
code. In particular, decompilers can reconstruct control
structures such as different types of loops and branch-
ing constructs. We make use of these syntactical features
of code as they have been shown to be valuable in the
context of source code authorship attribution [18]. For
decompilation, we employ the Hex-Rays decompiler [1].

Hex-Rays is a commercial state-of-the-art decompiler.
It converts executable programs into a human readable
C-like pseudo code to be read by human analysts. It is
noteworthy that this code is typically significantly longer
than the original source code. For example, decompiling
an executable binary generated from 70 lines of source
code with Hex-Rays produces on average 900 lines of
decompiled code. We extract two types of features from
this pseudo code: lexical features, and syntactical fea-
tures. Lexical features are simply the word unigrams,
which capture the integer types used in a program, names
of library functions, and names of internal functions
when symbol information is available. Syntactical fea-
tures are obtained by passing the C-pseudo code to jo-
ern [46], a fuzzy parser for C that is capable of produc-
ing fuzzy abstract syntax trees (ASTs) from Hex-Rays
pseudo code output. We derive syntactic features from
the abstract syntax tree, which represent the grammatical
structure of the program. Such features are (illustrated in
Figure 2) AST node unigrams, labeled AST edges, AST
node term frequency inverse document frequency, and
AST node average depth. Previous work on source code
authorship attribution [18, 45] shows that these features
are highly effective in representing programming style.
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int =

v0

f0

<

v0 MAX

func

decl if

stmtpred

call ...

if int

= stmt

func decl

pred

func

decl if

func

int

decl

int =

v0

f0

<

v0 C0

func

decl if

stmtpred

call ...

Abstract syntax tree (AST) Syntactic features
AST unigrams:

if int

= stmt

func decl

pred ...

AST bigrams:

func

decl if

func

int

decl
...

AST depth: 5

entry

blk1

blk2

blk4

blk3

exit

blk1 blk2 blk3

blk4

blk1

blk2

blk1

blk3

Control-flow graph (CFG) Control-flow features
CFG unigrams:

CFG bigrams:

...

entry

blk1

blk2

blk4

blk3

exit

blk1 blk2 blk3

blk4 ...

blk1

blk2

blk1

blk3

Figure 2: Feature extraction via decompilation and fuzzy
parsing: the C-like pseudo code produced by Hexrays is
transformed into an abstract syntax tree and control-flow
graph to obtain syntactic and control-flow features.

4.3 Dimensionality Reduction via informa-
tion gain

Our feature extraction process produces a large amount
of features, resulting in sparse feature vectors with thou-
sands of elements. However, not all features are equally
relevant to express a programmer’s style. This makes it
desirable to perform feature selection in order to obtain
a more compact representation of the data that reduces
the computational burden during classification. More-
over, sparse feature vectors may result in a large number
of zero-valued attributes being selected during random
forest’s random subsampling of the attributes to select a
best split. Reducing the dimensions of the feature set
is also important for avoiding overfitting. One exam-
ple to overfitting would be a rare assembly instruction
uniquely identifying an author. For these reasons, we
use information gain criteria to select the most informa-
tive attributes that represent each author as a class. This
reduces vector size and sparsity while increasing accu-
racy and machine learning model training speed. For ex-
ample, we get 750,000 features from the 900 executable
binary samples of 100 programmers. If we use all of
these features in classification, the accuracy is slightly
above 30% because the random forest might be randomly
selecting features with values of zero in the sparse fea-
ture vectors. Once the dimension of the feature vector
is reduced, we get less than 2,000 information gain fea-
tures. Extracting less than 2,000 features or training a
machine learning model where each instance has fewer
than 2,000 attributes is computationally efficient. On the

other hand, no sparsity remains in the feature vectors af-
ter dimensionality reduction which is one reason for the
performance benefits of dimensionality reduction. After
dimensionality reduction, the correct classification accu-
racy of 100 programmers increases from 30% to 90%.

We employed the dimensionality reduction step using
WEKA’s [23] information gain [36] attribute selection
criterion, which evaluates the difference between the en-
tropy of the distribution of classes and the Shannon en-
tropy of the conditional distribution of classes given a
particular feature. Information gain can be thought of
as measuring the amount of information that the obser-
vation of the value of an attribute gives about the class
label associated with the example.

In order to reduce the total size and sparsity of the fea-
ture vector, we retained only those features that individ-
ually had non-zero information gain.

4.4 Classification
For classification, we used a random forest ensemble
classifier [13]. Random forests are ensemble learners
built from collections of decision trees, where each tree is
trained on a subsample of the data obtained by randomly
sampling N training samples with replacement, where N
is the number of instances in the dataset.

During classification, each test example is classified
via each of the trained decision trees by following the bi-
nary decisions made at each node until a leaf is reached,
and the results are aggregated. The most populous class
can be selected as the output of the forest for simple
classification, or several possible classifications can be
ranked according to the number of trees that ‘voted’ for
the label in question when performing relaxed attribution
(see Section 5.5).

We employed random forests with 500 trees, which
empirically provided the best tradeoff between accu-
racy and processing time. Examination of numerous out
of bag error values across multiple fits suggested that
(logM)+ 1 random features (where M denotes the total
number of features) at each split of the decision trees was
in fact optimal in all of the experiments listed in Section
5, and was used throughout. Node splits were selected
based on the information gain criteria, and all trees were
grown to the largest extent possible, without pruning.

The data was analyzed via k-fold cross-validation,
where the data was split into training and test sets strat-
ified by author (ensuring that the number of code sam-
ples per author in the training and test sets was identi-
cal across authors). The parameter k varies according to
datasets and is equal to the number of instances present
from each author. The cross-validation procedure was re-
peated 10 times, each with a different random seed, and
average results across all iterations are reported, ensuring
that results are not biased by improbably easy or difficult
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to classify subsets.
Following previous work [10, 40] in this area, we re-

port our classification results in terms of accuracy. As
programmer de-anonymization is a multi-class classifi-
cation problem accuracy, or the true positive rate, repre-
sents the correct classification rate in the most meaning-
ful way.

5 Experiments with Google Code Jam
In this section, we go over the details of the various ex-
periments we performed to address the research question
formulated in Section 2.

5.1 Dataset

We evaluate our executable binary authorship attribution
method on a dataset based on the annual programming
competition Google Code Jam [5]. It is an annual con-
test that thousands of programmers take part in each year,
including professionals, students, and hobbyists from all
over the world. The contestants implement solutions to
the same tasks in a limited amount of time in a program-
ming language of their choice. Accordingly, all the cor-
rect solutions have the same algorithmic functionality.
There are two main reasons for choosing Google Code
Jam competition solutions as an evaluation corpus. First,
it enables us to directly compare our results to previous
work on executable binary authorship attribution as both
Alrabaee et al. [10] and Rosenblum et al. [40] evaluate
their approaches on data from Google Code Jam (GCJ).
Second, we eliminate the potential confounding effect
of identifying programming task rather than programmer
by identifying functionality properties instead of stylistic
properties. GCJ is a less noisy and clean dataset known
definitely to be single authored. GCJ solutions do not
have significant dependencies outside of the standard li-
brary and contain few or no third party libraries.

We focus our analysis on compiled C++ code, the most
popular programming language used in the competition.
We collect the solutions from the years 2008 to 2014
along with author names and problem identifiers.

5.2 Code Compilation

To create our experimental datasets, we first compiled
the source code with GNU Compiler Collection’s gcc or
g++ without any optimization to Executable and Link-
able Format (ELF) 32-bit, Intel 80386 Unix binaries.

Next, to measure the effect of different compilation
options, such as compiler optimization flags, we addi-
tionally compiled the source code with level-1, level-2,
and level-3 optimizations, namely the O1, O2, and O3
flags. The compiler attempts to improve the performance
and/or code size when the compiler flags are turned on.
Optimization has the expense of increasing compilation
time and complicating program debugging.

5.3 Dimensionality Reduction

We are interested in identifying features that represent
coding style preserved in executable binaries. With the
current approach, we extract 700,000 representations of
code properties of 100 authors, but only a subset of these
representations are the result of individual programming
style. We are able to capture the features that repre-
sent each author’s programming style that is preserved
in executable binaries by applying information gain cri-
teria to these 700,000 features. After applying informa-
tion gain, we reduce the feature set size to approximately
1,600 to effectively represent coding style properties that
were preserved in executable binaries. Considering the
fact that we are reaching such high accuracies on de-
anonymizing 100 programmers with 900 executable bi-
nary samples (discussed below), these features are pro-
viding strong representation of style that survives compi-
lation. We also see that all of our feature sources, namely
disassembly, CFG, and decompiled code are capturing
the preserved coding style. To examine the potential for
overfitting, we also consider the ability of this feature set
to generalize to a different set of programmers (see Sec-
tion 5.6), and show that it does so, further supporting our
belief that these features effectively capture coding style.

5.4 We can de-anonymize programmers
from their executable binaries.

This is the main experiment that demonstrates how de-
anonymizing programmers from their executable bina-
ries is possible. After preprocessing the dataset to gen-
erate the executable binaries without optimization, we
further process the executable binaries to obtain the dis-
assembly, control flow graphs, and decompiled source
code. We then extract all the possible features detailed
in Section 4. We take a set of 100 programmers who
all have 9 executable binary samples. With 9-fold-cross-
validation, the random forest classifier correctly classi-
fies 900 test instances with 89.8% accuracy, which is sig-
nificantly higher than the accuracies reached in previous
work.

There is an emphasis on the number of folds used in
these experiments because each fold corresponds to the
implementation of the same algorithmic function by all
the programmers in the GCJ dataset (e.g. all samples in
fold 1 may be attempts by the various authors to solve
a list sorting problem). Since we know that each fold
corresponds to the same Code Jam problem, by using
stratified cross validation without randomization, we en-
sure that all training and test samples contain the same al-
gorithmic functions implemented by all of the program-
mers. The classifier uses the excluded fold in the test-
ing phase, which contains executable binary samples that
were generated from an algorithmic function that was not
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previously observed in the training set for that classifier.
Consequently, the only distinction between the test in-
stances is the coding style of the programmer, without
the potentially confounding effect of identifying an algo-
rithmic function.

5.5 Relaxed Classification: In difficult sce-
narios, the classification task can be
narrowed down to a small suspect set.

In Section 5.1, the previously unseen anonymous exe-
cutable binary sample is classified such that it belongs to
the most likely author’s class. In cases where we have
too many classes or the classification accuracy is lower
than expected, we can relax the classification to top–n
classification. In top–n relaxed classification, if the test
instance belongs to one of the most likely n classes, the
classification is considered correct. This can be useful in
cases when an analyst or adversary is interested in find-
ing a suspect set of n authors, instead of a direct top–1
classification. Being able to scale down an authorship
investigation for an executable binary sample of inter-
est to a reasonable sized set of suspect authors among
hundreds of authors greatly reduces the manual effort re-
quired by an analyst or adversary. Once the suspect set
size is reduced, the analyst or adversary could adhere to
content based dynamic approaches and reverse engineer-
ing to identify the author of the executable binary sam-
ple. Figure 3 shows how correct classification accuracies
approach 100% as the classification is relaxed to top-10
in binaries that have been optimized at different levels.

Figure 3: De-anonymizing 100 Programmers

5.6 The feature set selected via information
gain works and is validated across dif-
ferent sets of programmers.

In our earlier experiments, we trained the classifier on the
same set of executable binaries that we used for selecting
features via information gain. The high number of start-
ing features from which we select our final feature set via
information gain does raise the potential concern of over-
fitting. To examine this, we applied this main feature set
to a different set of programmers and executable binaries.
If we are able to reach accuracies similar to what we got

earlier, we can conclude that these information gain fea-
tures do generalize to other programmers and problems,
and therefore are not overfitting to the 100 programmers
they were generated from. This also suggests that the in-
formation gain features in general capture programmer
style.

Recall that analyzing 900 executable binary samples
of the 100 programmers resulted in about 700,000 fea-
tures, and after dimensionality reduction, we are left with
1,600 information gain features. We picked a differ-
ent (non-overlapping) set of 100 programmers and per-
formed another de-anonymization experiment in which
the feature selection step was omitted, using instead the
information gain features obtained from the original ex-
periment. This resulted in very similar accuracies: we
obtained 92,2% accuracy in de-anonymizing the valida-
tion set using features selected via the main development
set, compared to the 89.8% we achieve with the main
development set. The ability of the information gain fea-
tures to generalize beyond the dataset which guided their
selection strongly supports the assertion that these fea-
tures obtained from the main set of 100 programmers
are not overfitting, do actually represent coding style
in executable binaries, and can be used across different
datasets.

5.7 Large Scale De-anonymization: We
can de-anonymize 600 programmers
from their executable binaries.

We would like to see how well our method scales up to
600 users. An analyst with a large set of labeled sam-
ples might be interested in performing large scale de-
anonymization. For this experiment, we use 600 contes-
tants from GCJ with 9 files. We only extract the informa-
tion gain features from the 600 users. This reduces the
amount of time required for feature extraction. On the
other hand, this experiment shows how well the informa-
tion gain features represent overall programming style.
The results of large scale programmer de-anonymization
in Figure 4, show that our method can scale to larger
datasets with the initial set of features with a surprisingly
small drop on accuracy.

Figure 4: Large Scale Programmer De-anonymization
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5.8 We advance the state of executable bi-
nary authorship attribution.

Rosenblum et al. [40] present the largest scale evalua-
tion of executable binary authorship attribution in related
work. [40]’s largest dataset contains 191 programmers
with at least 8 training samples per programmer. We
compare our results with [40]’s and in Table 1 show how
we advance the state of the art both in accuracy and on
larger datasets. [40] use 1,900 coding style features to
represent coding style whereas we use 1,600 features,
which might suggest that our features are more power-
ful in representing coding style that is preserved in exe-
cutable binaries.

Related Work Number of
Programmers

Number of
Training
Samples

Accuracy

Rosenblum et al. 20 8-16 77%
This work 600 8 78%

Rosenblum et al. 20 8-16 77%
This work 20 8 94%

Rosenblum et al. 100 8-16 61%
This work 100 8 92%

Rosenblum et al. 191 8-16 51%
This work 191 8 86%
This work 600 8 78%

Table 1: Comparison to Previous Results

5.9 Programmer style is preserved in exe-
cutable binaries.

We show throughout the results that it is possible to de-
anonymize programmers from their executable binaries
with a high accuracy. To quantify how stylistic features
are preserved in executable binaries, we calculated the
correlation of stylistic source code features and decom-
piled code features. We used the stylistic source code
features from previous work [18] on de-anonymizing
programmers from their source code. We took the most
important 150 features in coding style that consist of
AST node frequency, AST node average depth, AST
node bigram frequency, AST node TFIDF, word uni-
gram recency, and C++ keyword frequency. For each
executable binary sample, we have the corresponding
source code sample. We extract 150 information gain
features from the original source code. We extract de-
compiled source code features from the decompiled ex-
ecutable binaries. For each executable binary instance,
we set one corresponding information gain feature as the
class to predict and we calculate the correlation between
the decompiled executable binary features and the class
value. A random forest classifier with 500 trees predicts
the class value of each instance, and then Pearson’s cor-

relation coefficient is calculated between the predicted
and original values. The correlation has a mean of 0.32
and ranges from -0.12 to 0.69 for the most important 150
features.

To see how well we can reconstruct the original source
code features from decompiled executable binary fea-
tures, we reconstructed the 900 instances with 150 fea-
tures that represent the highest information gain features.
We calculated the cosine similarity between the original
900 instances and the reconstructed instances after nor-
malizing the features to unit distance. The cosine simi-
larity for these instances is in Figure 5, where a cosine
similarity of 1 means the two feature vectors are identi-
cal. The high values (average of 0.81) in cosine similar-
ity suggest that the reconstructed features are similar to
the original features. When we calculate the cosine dis-
tance between the feature vectors of the original source
code and the corresponding decompiled code’s feature
vectors (no predictions), the average cosine distance is
0.35. This result suggests that the predicted features are
much similar to original source code than the features ex-
tracted from decompiled code but decompiled code still
preserves transformed forms of the original source code
features well enough to reconstruct the original source
code features.

Figure 5: Feature Transformations: Each data point on
the x-axis is a different executable binary sample. Each
y-axis value is the cosine distance between the feature
vector extracted from the original source code and the
feature vector that tries to predict the original features.
The average value of these 900 cosine distance measure-
ments is 0.81.

5.10 Programmer skill set has an effect on
coding style that is preserved in exe-
cutable binaries.

In order to investigate the effect of programmer skill
set on coding style that is preserved in executable bina-
ries, we took two sets with 20 programmers. We con-
sidered the GCJ contestants who were able to advance
to more difficult rounds as more advanced programmers
as opposed to contestants that were eliminated in easier
rounds. The subset of 20 programmers used for this ex-
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periment is not as large compared to the other ones used
during evaluation because there were a limited number
of people who were able to advance to the more diffi-
cult rounds. The programmers with more advanced skill
sets were able to solve 14 problems and the programmers
that had a less advanced skill set were only able to solve
7 problems. All of the 40 programmers had implemented
the same 7 problems from the easiest rounds. We were
able to identify the more advanced 20 programmers with
95.8% accuracy while we identified the less advanced 20
programmers with 90.1% accuracy. This might indicate
that, programmers who are advanced enough to answer
14 problems likely have more unique coding styles com-
pared to contestants that were only able to solve the first
7 problems.

To investigate the possibility that contestants who are
able to advance further in the rounds have more unique
coding styles, we performed a second round of experi-
ments on comparable datasets. We took a dataset with 6
solution files and 20 authors and also a dataset that con-
tains these 6 files but has 12 files in total and 20 program-
mers. We were able to identify the more advanced 20
programmers with 92.5% accuracy while we identified
the less advanced 20 programmers with 88.6% accuracy.
These results suggest that programmer skill set has an
effect on coding style, and this effect on coding style is
preserved in compilation.

A = #authors, F = max #problems completed
N = #problems included in dataset (N ≤ F)

A = 20
F = 14 F = 7 F = 12 F = 6

N = 7 easier N = 7 N = 6 easier N = 6
Average accuracy after 10 iterations

95.8 90.11 92.5 88.61

1Drop in accuracy due to programmer skill set.

Table 2: Effect of Programmer Skill Set on Coding Style
Preserved in Executable Binaries

6 Experiments with Real World Scenarios
6.1 Programmers of optimized executable

binaries can be de-anonymized.
In Section 5, we discussed how we evaluated our ap-
proach on a controlled and clean real world dataset. Sec-
tion 5 shows how we advance over all the previous meth-
ods that were all evaluated with clean datasets such as
GCJ or homework assignments. In this section, we in-
vestigate a more complicated dataset which has been op-
timized during compilation, where the executable binary
samples have been normalized further during compila-
tion.

Compiling with optimization tries to minimize or
maximize some attributes of an executable computer pro-

gram. The goal of optimization is to minimize the time it
takes to execute a program or to minimize the amount of
memory a program occupies. The compiler applies op-
timizing transformations which are algorithms that take
a program and transform it to a semantically equivalent
program that uses fewer resources.

GCC has predefined optimization levels that turn on
sets of optimization flags. Compilation with optimiza-
tion level-1, tries to reduce code size and execution time,
takes more time and much more memory for large func-
tions than compilation with no optimizations. Compila-
tion with optimization level-2 optimizes more than level-
1 optimization, uses all level-1 optimization flags and
more. Level-2 optimization performs all optimizations
that do not involve a space-speed tradeoff. Level-2 opti-
mization increases compilation time and performance of
the generated code when compared to optimization with
level-1. Level-3 optimization yet optimizes more than
both level-1 and level-2.

This work shows that programming style features sur-
vive compilation without any optimizations. As compi-
lation with optimizations transforms code further, we in-
vestigate how much programming style is preserved in
executable binaries that have gone through compilation
with optimization. Our results summarized in Table 3
show that programming style is preserved to a great ex-
tent even in the most aggressive level-3 optimization.
This shows that programmers of optimized executable
binaries can be de-anonymized and optimization is not
a highly effective code anonymization method.

Number of
Programmers

Number of
Training
Samples

Compiler
Optimiza-
tion Level

Accuracy

100 8 None 89.8%
100 8 1 90.1%
100 8 2 86.2%
100 8 3 85.7%

Table 3: Programmer De-anonymization with Compiler
Optimization

6.2 Removing symbol information does not
anonymize executable binaries.

To investigate the relevance of symbol information for
classification accuracy, we repeat our experiments with
100 authors presented in the previous section on fully
stripped executable binaries, that is, executable binaries
where symbol information is missing completely. We
obtain these executable binaries using the standard util-
ity GNU strip on each executable binary sample prior to
analysis. Upon removal of symbol information, without
any optimizations, we notice a drop in classification ac-
curacy by 23%, showing that stripping symbol informa-
tion from executable binaries is not effective enough to
anonymize an executable binary sample.
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6.3 We can de-anonymize programmers
from obfuscated binaries.

We are furthermore interested in finding out whether our
method is capable of dealing with simple binary ob-
fuscation techniques as implemented by tools such as
Obfuscator-LLVM [25]. These obfuscators substitute in-
structions by other semantically equivalent instructions,
they introduce bogus control flow, and can even com-
pletely flatten control flow graphs.

For this experiment, we consider a set of 100 program-
mers from the GCJ data set, who all have 9 executable bi-
nary samples. This is the same data set as considered in
our main experiment (see Section 5.4), however, we now
apply all three obfuscation techniques implemented by
Obfuscator-LLVM to the samples prior to learning and
classification.

We proceed to train a classifier on obfuscated sam-
ples. This approach is feasible in practice as an ana-
lyst who has only non-obfuscated samples available can
easily obfuscate them to obtain the necessary obfuscated
samples for classifier training. Using the same informa-
tion gain features as in Section 5.4, we obtain an accu-
racy of 86.2% in correctly classifying authors, which is
only a mild drop in comparison to the 89.8% accuracy
observed without obfuscation.

6.4 De-anonymization in the Wild

To better assess the applicability of our programmer de-
anonymization approach in the wild, we extend our ex-
periments to code collected from real open-source pro-
grams as opposed to solutions for programming compe-
titions. To this end, we automatically collected source
files from the popular open-source collaboration plat-
form GitHub [6]. Starting from a seed set of popular
repositories, we traversed the platform to obtain C/C++
repositories that meet the following criteria. Only one
author has committed to the repository. The repository is
popular as indicated by the presence of at least 5 stars, a
measure of popularity for repositories on GitHub. More-
over, it is sufficiently large, containing a total of 200 lines
at least. The repository is not a fork of another reposi-
tory, nor is it named ‘linux’, ‘kernel’, ‘osx’, ‘gcc’, ‘llvm’,
‘next’, as these repositories are typically copies of the so-
named projects.

We cloned the repositories meeting these criteria and
collect only C/C++ files for which the main author has
contributed at least 5 commits and the commit messages
do not contain the word ’signed-off’, a message that typi-
cally indicates that the code is written by another person.
An author and her files are included in the dataset only
if she has written at least 10 different files. In the final
step, we manually verified ground truth on authorship for
the selected files to make sure that they do not show any

clear signs of code reuse from other projects. Table 4
shows the statistics of the resulting dataset.

Type Amount
Authors 161
Repositories 439
Files 3,438
Repositories / Author 2 – 8
Files / Author 2 – 344

Table 4: Single Authored Github Repositories

We subsequently compile the collected projects to ob-
tain object files for each of the selected source files. We
perform our experiment on object files as opposed to en-
tire binaries as these are the binary representations of the
source files we can clearly attribute to one author.

For different reasons, compiling code may not be pos-
sible for a project, e.g., the code may not be in a compi-
lable state, it may not be compilable for our target plat-
form (32 bit Intel, Linux), or the necessary files to setup
a working build environment can no longer be obtained.
Despite these difficulties, we are able to generate 1,075
object files from 90 different authors, where the num-
ber of object files per author ranges from 2 to 24, with
most authors having at least 9 samples. We used 50 of
these authors that have 6 to 15 files to perform a machine
learning experiment with more balanced class sizes.

We extract the information gain features selected from
GCJ data from this GitHub dataset. The corresponding
classifier reaches an accuracy of 60.7% in correctly iden-
tifying the authors of executable binary samples.

Being able to de-anonymize programmers in the wild
by using fewer than 2,000 stylistic features obtained from
our clean evaluation dataset is a promising step towards
attacking more challenging real world de-anonymization
problems.

6.5 Have I seen this programmer before?

While attempting to de-anonymize programmers in real
world settings, we cannot be certain that we have for-
merly encountered code samples from the programmers
in the test set. As a mechanism to check whether an
anonymous test file belongs to one of the candidate pro-
grammers in the training set, we extend our method to an
open world setting by incorporating classification confi-
dence thresholds. In random forests, the class probability
or classification confidence that executable binary B is of
class i is calculated by taking the percentage of trees in
the random forest that voted for that particular class, as
follows:

P(Bi) =
∑ j Vj(i)
|T | f

(1)

There are multiple ways to assess classifier confidence
and we devise a method that calculates the classification
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confidence by using classification margins. In this set-
ting, the classification margin of a single instance is the
difference between the highest and second highest P(Bi).
The first step towards attacking an open world classifica-
tion task is identifying the confidence threshold of the
classifier for classification verification. As long as we
determine a confidence threshold based on training data,
we can calculate the probability that an instance belongs
to one of the programmers in the training set and accord-
ingly accept or reject the classification.

We performed 900 classifications in a 100-class prob-
lem to determine the confidence threshold based on the
training data. The accuracy was 92.7%. There were 66
misclassifications whose mean classification margin was
0.15 and it ranged from 0 to 0.4, except the 4 outliers
that can be seen in Figure 6. By picking 0.4 as an ag-
gressive threshold, we can reject 62 false positives out of
66 and manually inspect classifications that are under the
confidence threshold with the knowledge that most of the
misclassifications lie in that range.

Now that we picked 0.4 as our classification margin
threshold, which can be adjusted according to false pos-
itive and false negative tolerance, we can check how ef-
fective this method is in an open world setting. We take
another set of 100 programmers with 900 samples. We
classify these 900 samples with the closed world classi-
fier that was trained in the first step on samples from a
disjoint set of programmers. All of the 900 programmers
are attributed to a programmer in the closed world clas-
sifier with a mean classification margin of 0.17. By us-
ing the verification threshold of 0.4, we can reject 811 of
these classifications for manual inspection to see if they
are false positives or if they do not belong to a program-
mer in the training set. These results are encouraging for
extending our programmer de-anonymization method to
open world settings where an analyst deals with many
uncertainties under varying fault tolerance levels.

Figure 6: Confidence Thresholds from Classification
Margin Curves for Classification Verification

7 Discussion
We consider two data sets: the Google Code Jam (GCJ)
dataset, and a dataset based on GitHub repositories. Us-
ing the GitHub dataset, we show that we can perform
programmer de-anonymization with executable binary
authorship attribution in the wild. We de-anonymize

GitHub programmers by using stylistic features obtained
from the GCJ dataset. This supports the supposition
that, in addition to its other useful properties for scien-
tific analysis of attribution tasks, the GCJ dataset is a
valid and useful proxy for real-world authorship attribu-
tion tasks.

The advantage of using the GCJ dataset is that we can
perform the experiments in a strictly controlled environ-
ment where the most distinguishing difference between
programmers’ solutions is their programming style. Ev-
ery contestant implements the same functionality, in a
limited amount of time while at each round problems
get more difficult. This provides the opportunity to con-
trol the difficulty level of the samples and the skill set of
the programmers in the dataset. In contrast, GitHub of-
fers a noisy dataset due to the collaborative nature of the
samples. However, our results show that in cases where
enough training data is available, high accuracies are still
achievable.

Previous work shows that coding style is quite preva-
lent in source code. We were surprised to find that it
is also preserved to a great degree in compiled source
code. We can de-anonymize programmers from com-
piled source code with great accuracy, and further-
more, we can de-anonymize programmers from source
code compiled with optimization. Optimizations trans-
form executable binaries further to improve performance
or memory usage. In our experiments, we see that
even though basic obfuscation, optimization, or strip-
ping symbols transforms executable binaries more than
plain compilation, stylistic features are still preserved to
a large degree.

In source code authorship attribution [18], program-
mers who can implement more sophisticated functional-
ity have a more distinct programming style. We observe
the same pattern in executable binary samples and gain
some software engineering insights by analyzing stylistic
properties of executable binaries.

Even though executable binaries look cryptic and dif-
ficult to analyze, we can still extract many useful fea-
tures from them. We extract features from disassembly,
control flow graphs, and also decompiled code to iden-
tify features relevant to only programming style. Af-
ter dimensionality reduction with information gain, we
see that each of the feature spaces provides program-
mer style information. All the feature spaces contain a
total of more than 700,000 features for 900 executable
binary samples of 100 authors. Approximately 1,600
features suffice to capture enough key features of cod-
ing style to enable robust authorship attribution. We
see that the information gain features are valid in differ-
ent datasets with different programmers, including opti-
mized or obfuscated programmers. Also, the information
gain features are helpful in scaling up the programmer
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de-anonymization approach. While we can identify 100
programmers with 92% accuracy, we can de-anonymize
600 programmers with 78% accuracy using the same set
of 1,600 features. 78% is a very high number for such
a challenging de-anonymization task where the random
chance of correctly identifying an author is 0.17%.
8 Limitations
Our experiments suggest that our method is able to as-
sist in de-anonymizing programmers with significantly
higher accuracy than state-of-the-art approaches. How-
ever, there are also assumptions that underlie the valid-
ity of our experiments as well as inherent limitations of
our method that we discuss in the following paragraphs.
First, we assume that our ground truth is correct, but in
reality programs in GCJ or on GitHub might be writ-
ten by programmers other than the stated programmer,
or by multiple programmers. Such a ground truth prob-
lem would cause the classifier to train on noisy models
which would lead to lower de-anonymization accuracy
and a noisy representation of programming style. Sec-
ond, many source code samples from GCJ contestants
cannot be compiled. Consequently, we perform evalu-
ation only on the subset of samples which can be com-
piled. This has two effects: first, we are performing at-
tribution with fewer executable binary samples than the
number of available source code samples. This is a limi-
tation for our experiments but it is not a limitation for an
attacker who first gets access to the executable binary in-
stead of the source code. If the attacker gets access to the
source code instead, she could perform regular source
code authorship attribution. Second, we must assume
that whether or not a code sample can be compiled does
not correlate with the ease of attribution for that sample.
Third, we only consider C/C++ code compiled using the
GNU compiler gcc in this work, and assume that the exe-
cutable binary format is the Executable and Linking For-
mat. This is important to note as dynamic symbols are
typically present in ELF binary files even after stripping
of symbols, which may ease the attribution task relative
to other executable binary formats that may not contain
this information. We defer the investigation of the im-
pact that other compilers, languages, and binary formats
might have on the attribution task to future work.

Finally, while we show that our method is capable of
dealing with simple binary obfuscation techniques, we
do not consider executable binaries that are heavily ob-
fuscated to hinder reverse engineering. While simple
systems, such as packers [2] or encryption stubs that
merely restore the original executable binary into mem-
ory during execution may be analyzed by simply re-
covering the unpacked or decrypted executable binary
from memory, more complex approaches are becoming
increasingly commonplace, particularly in malware. A
wide range of anti-forensic techniques exist [21], in-

cluding methods that are designed specifically to pre-
vent easy access to the original bytecode in memory
via such techniques as modifying the process environ-
ment block or triggering decryption on the fly via guard
pages. Other techniques such as virtualization [3, 4]
transform the original bytecode to emulated bytecode
running on virtual machines, making decompilation both
labor-intensive and error-prone. Finally, the use of spe-
cialized compilers that lack decompilers and produce
nonstandard machine code – see [19] for an extreme but
illustrative example – may likewise hinder our approach,
particularly if the compiler is not generally available and
cannot be fingerprinted. We leave the examination of
these techniques, both with respect to their impact on au-
thorship attribution and to possible mitigations, to future
work.

9 Conclusion
De-anonymizing programmers has direct implications
for privacy and security. The ability to attribute author-
ship to anonymous executable binary samples has appli-
cations in software forensics, and is an immediate con-
cern for programmers that would like to remain anony-
mous. We de-anonymize 100 programmers from their
executable binary samples with 92% accuracy, and 600
programmers with 78% accuracy. Our work is a signifi-
cant advance over previous work and shows that coding
style is preserved in compilation, contrary to the belief
that compilation wipes away stylistic properties.

We discover 1,600 features that effectively represent
coding style in executable binaries. We obtain this pre-
cise representation of coding style via two different dis-
assemblers, control flow graphs, and a decompiler. With
this comprehensive representation, we are able to re-
identify GitHub authors from their executable binary
samples in the wild, where we reach an accuracy of 61%
for 50 programmers, even though these samples are noisy
and products of collaborative efforts.

We show that programmer style is embedded in ex-
ecutable binaries to a surprising degree, even when it
is obfuscated, generated with aggressive compiler opti-
mizations, or when symbols are stripped. While compi-
lation, basic binary obfuscation, optimization, and strip-
ping of symbols reduce the accuracy of stylistic analysis,
they are not effective in anonymizing coding style. In
future work, we plan to investigate if stylistic properties
can be completely stripped from binaries to render them
anonymous. We also plan to look at different real world
executable binary authorship attribution cases, such as
identifying authors of malware, which go through a mix-
ture of sophisticated obfuscation methods by combining
polymorphism and encryption. Our results so far sug-
gest that while stylistic analysis is unlikely to provide a
“smoking gun” in the malware case, it may contribute
significantly to attribution efforts.
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Feature Source Number
of Possible
Features

Information
Gain Fea-
tures

word unigrams hex-rays
decompiled
code

29,278 120

AST node TF* hex-rays
decompiled
code

5,278 43

Labeled AST edge
TF*

decompiled
code

26,783 80

AST node
TFIDF**

decompiled
code

5,278 37

AST node average
depth

decompiled
code

5,278 39

C++ keywords decompiled
code

73 4

radare2 disassem-
bly unigrams

radare disas-
sembly

21,206 86

radare2 disassem-
bly bigrams

radare disas-
sembly

39,506 113

radare2 disassem-
bly trigrams

radare disas-
sembly

112,913 105

radare2 disassem-
bly 6-grams

ndisasm dis-
assembly

260,265 81

radare2 CFG node
unigrams

radare disas-
sembly

5,297 13

radare2 CFG edges radare disas-
sembly

10,246 5

ndisasm disassem-
bly unigrams

ndisasm dis-
assembly

5,383 64

ndisasm disassem-
bly bigrams

ndisasm dis-
assembly

14,305 138

ndisasm disassem-
bly trigrams

ndisasm dis-
assembly

5,237 90

ndisasm disassem-
bly 6-grams

ndisasm dis-
assembly

159,142 469

Total 705,468 1,655
TF* = term frequency

TFIDF** = term frequency inverse document frequency

Table 5: Programming Style Features in Executable Bi-
naries
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